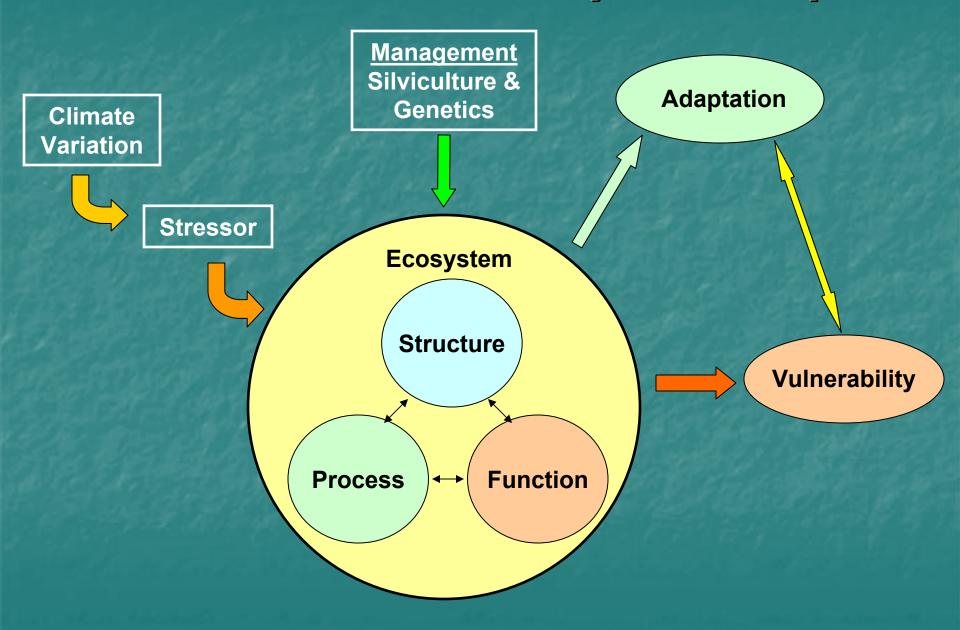
Silvicultural Approaches for Adapting Forests to Climate Change

¹Paul Anderson and ²Daniel Chmura ¹USDA Forest Service, Pacific Northwest Research Station ²Department of Forest Ecosystems and Society, Oregon State University

Taskforce on Adapting Forests to Climate Change http://tafcc.forestry.oregonstate.edu



Outline

- Basic premise for silvicultural approaches to forest adaptation
- Framework for assessment and prescription

Climate Variation and Ecosystem Responses

Climate Variation and Stressors

- Climate Variation
 - Warmer summer
 - Warmer winter
 - Decreased precipitation
 - Decreased snowpack
 - Increased variation in temperature and precipitation
 - Elevated CO₂
 - Atmospheric deposition

- Physical Stresses
 - Moisture deficit
 - Drought
 - Heat load
 - Fire
 - Frost
 - Floods
 - Landslides and erosion
- Biotic Stresses
 - Insects
 - Pathogens
 - Herbivory
 - Competitive interaction

Vulnerabilities

Vulnerability is the degree to which a system is likely to experience harm due to exposure to a specified hazard or stress

 Vulnerability of a system to a hazard or stress is a function of exposure, sensitivity and adaptive capacity

Acclimation and Adaptation

- Plant populations may naturally adjust to climate change in three ways:
 - altered physiology and development in response to environmental change
 - evolution in place
 - migration to new habitats

Acclimation and Adaptation

- Plant populations may naturally adjust to climate change in three ways:
 - altered physiology and development in response to environmental change
 - evolution in place
 - migration to new habitats
- Adjustments occur at species, population and genotype levels – not as communities

Adaptive Capacity

 The capacity of organisms, both individuals and groups, to respond to a change in the state of the system;

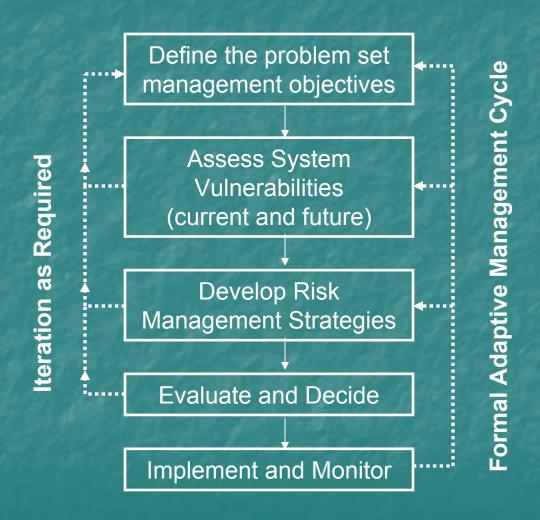
 Depends on initial diversity and the capability of component organisms to adjust and change

The Premise

- Long-term adaptation to climate changes will require healthy and productive forests in the shortterm
- Silviculture can enhance adaptation by fostering the development of forest stands and landscapes resistant and resilient to climate change stresses
- Many silvicultural principles and approaches currently used to manage to stands or landscapes subject to climatic and disturbance stresses will be applicable to management in a future changing climate

Thin to avoid overstocking that increases mortality from drought, insects, disease and wildfire

- Thin to avoid overstocking that increases mortality from drought, insects, disease and wildfire
- Provide structural features at stand and landscape scales to meet the varying habitat requirements of plants and animals


- Thin to avoid overstocking that increases mortality from drought, insects, disease and wildfire
- Provide structural features at stand and landscape scales to meet the varying habitat requirements of plants and animals
- Use vegetative buffers to mitigate effects of harvest on stream and riparian microclimates and habitat

- Thin to avoid overstocking that increases mortality from drought, insects, disease and wildfire
- Provide structural features at stand and landscape scales to meet the varying habitat requirements of plants and animals
- Use vegetative buffers to mitigate effects of harvest on stream and riparian microclimates and habitat
- Following disturbance manage for prompt revegetation with adapted plant communities

- Thin to avoid overstocking that increases mortality from drought, insects, disease and wildfire
- Provide structural features at stand and landscape scales to meet the varying habitat requirements of plants and animals
- Use vegetative buffers to mitigate effects of harvest on stream and riparian microclimates and habitat
- Following disturbance manage for prompt revegetation with adapted plant communities
- Promote development of mixed-species forests

- Thin to avoid overstocking that increases mortality from drought, insects, disease and wildfire
- Provide structural features at stand and landscape scales to meet the varying habitat requirements of plants and animals
- Use vegetative buffers to mitigate effects of harvest on stream and riparian microclimates and habitat
- Following disturbance manage for prompt revegetation with adapted plant communities
- Promote development of mixed-species forests
- Maintain a balance of age-classes, from regeneration to oldgrowth, at the landscape scale

Framework for developing and evaluating climate change adaptation strategies

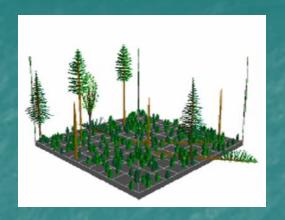
Source: Ohlson et al. 2005. Forestry Chronicle 81: 97-103

Objectives: Why Do We Manage Forests?

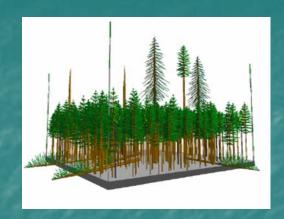
- Maintenance and/or Creation of Resilient Ecosystems
 - Biodiversity
 - Wildlife habitat
 - Fish habitat
 - Long-term productivity
 - Resistance and resilience to disturbance

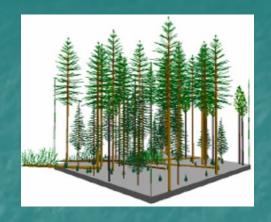
Tangible Products

- Timber
- Water
- Carbon
- Non-timber Forest Products


Other Social Values

- Aesthetics
- Recreation
- Cultural Importance


Vulnerability Assessment


Vulnerabilities Vary with Stand Development

Establishment

Stem Exclusion

Complex Structure

Lack of site dominance	Density dependent mortality	Individual Tree/ Disturbance Mortality	
Lack of seed/propagules	Insect epidemics	Insect epidemics	
Herbivory	Drought	Drought	
Shrub Competition	Windthrow	Windthrow	
Fire	Fire	Fire	

Vulnerabilities Vary with Stand Development

Stress

Establishment

<u>Cilmate</u>
<u>Variation</u>
Increased
Summer
Temperature

<u>Stress</u>
Increased
Heal Load

<u>Mediator</u>	Pro
Transpiration	Natu Seed Estat
Matabolism/ Membrane Integrity	Natu Seed Estat
Net assimilation/ Carbon allocation	Seed Prod

Affected Process	<u>Vulnerability</u>
Natural Seedling Establishment	Dessication
Natural Seedling Establishment	High- temperature Injury
Seed Production	Few or Poor Quality Seed

Vulnerabilities Vary with Stand Development

Complex Structure

Climate
<u>Variation</u>
Increased
summer
temperature
&
Decreased
summer soil
moisture

Stress Increased heat load & Increased moisture deficit

Stress Mediators	Affected Processes
Canopy Leaf ` Area	
Net carbon Issimilation ate	Growth & Vigor
ranspiration /	
Secondary compounds	∠ Plant defense

Vulnerability
Decreased productivity

Drought
Insect Infestation

Identification and Evaluation of Silvicultural Options

(cu. m)

when $SI_{50} = 18 \text{ m}$

TASS-generated

mortality curves

5000

trees / ha

Silvicultural Options: Tools in the Toolkit

Silvicultural Options

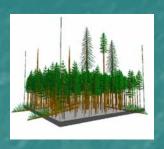
- Natural regeneration
- Artificial regeneration
- Site preparation
- Competing vegetation manipulation
- Composition manipulation
- Density management
- Fertilization
- Regeneration harvest
- Fuels reduction
- Others

Systematic and Site Specific Application in a Landscape Context

Linking Silvicultural Options to Identified Vulnerabilities

Post-disturbance lack
 of seed source

Density dependent beetle infestations


Thinning

Frost damage to regeneration

Partial overstory retention

Silvicultural Options Vary with Objectives and Stand Development

Stem Exclusion

Vu	<u>Inera</u>	<u>bilit</u>	y

Drought

&

Insect Infestation Management Objectives

Late-

Successional

Forest

&

Resilient & Resistant

Forest

Silvicultural Objectives

Improve site water

halana

balance

&

Enhance vegetation

diversity

Silvicultural Options

Thinning -

Density

management

Manipulation of understory

vegetation

Underplanting

Potential Collateral Issues

Fuels

Erosion

Exotic species

Competition

Silvicultural Options Vary with Objectives and Stand Development

Stem Exclusion

1/			4
	nara	nii	$\mathbf{T}\mathbf{V}$
v u	nera		

Drought

Insect Infestation

Decreased productivity

Management Objectives

Resilient & Resistant Forest

Timber production

Silvicultural Objectives

Improve site water balance

Allocate site resources to crop trees

Regenerate Stand with Improved Sources

Silvicultural Options

Thinning -Density management

Manipulation of understory vegetation

Regeneration Harvest

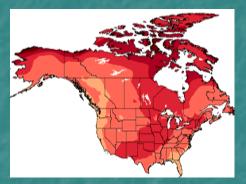
Collateral Issues

Fuels

Erosion

Exotic species

Competing vegetation


Adapted Planting Stock

Evaluation and Prioritization — Which Options Are Worth Doing?

- Efficacy
- Risk tolerance
- Logistical feasibility
- Economic feasibility

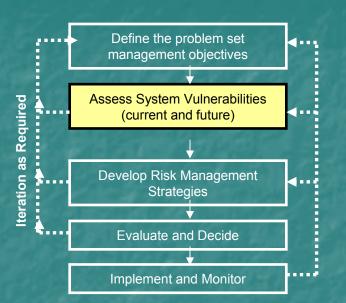
Monitoring Ecosystem Response and Vulnerability

- Global climate dynamics discernable at ecoregion or larger spatial scales and at decadal or longer time scales
- Ecosystem responses and sensitivities determined at the landscape or larger scales
- Silvicultural activities based on standlevel conditions or trends as evaluated in a landscape context

What are Useful Indicators of Stress or Vulnerability?

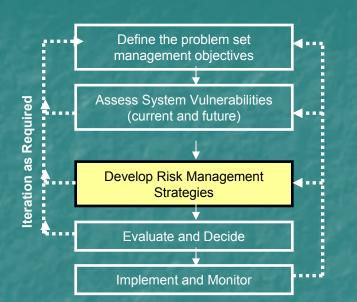
Landscape

- Watershed runoff abundance and timing
- Water quality
- Stream network contraction
- Vegetation composition and spatial pattern
- Vegetation productivity
- Vegetation mortality
- Abundance and spatial distribution of insect and disease populations
- Abundance and distribution of focal wildlife species

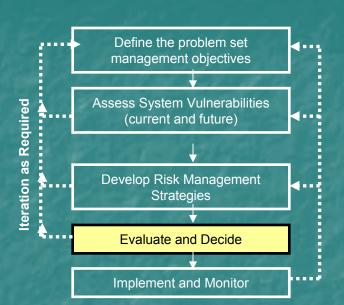

Stands

- Crown damage
- Foliage shedding
- Abnormal growth
- Decreased frost hardiness
- Decreased pathogen/pest resistance
- Low fertility
- Foliage wilt/dessication
- Bark damage
- Altered flowering/seed production

Formal Adaptive Management Cycle

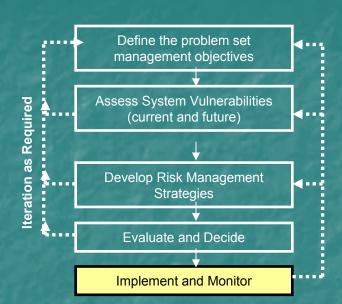

Outstanding Questions

What are the potential vulnerabilities to be associated with specific forest types at various stages of development?


Outstanding Questions

- What are the potential vulnerabilities to be associated with specific forest types at various stages of development?
- What level of response or damage would trigger a decision to actively plan or manage for climate change?

Outstanding Questions


- What are the potential vulnerabilities to be associated with specific forest types at various stages of development?
- What level of response or damage would trigger a decision to actively plan or manage for climate change?
- To what extent can these vulnerabilities be mitigated by specific silvicultural tools or systems?
- What can prior research and experience tell us about the effectiveness of silvicultural options for dealing with future climate stresses?

Formal Adaptive Management Cycle

Outstanding Questions

- What are the potential vulnerabilities to be associated with specific forest types at various stages of development?
- What level of response or damage would trigger a decision to actively plan or manage for climate change?
- To what extent can these vulnerabilities be mitigated by specific silvicultural tools or systems?
- What can prior research and experience tell us about the effectiveness of silvicultural options for dealing with future climate stresses?
- What processes would serve as indicators of performance for silvicultural actions?

Next Steps for TAFCC - Silviculture

- Develop literature based review of scientific information supporting silvicultural approaches to climate change adaptation
 - Collaborative effort of scientists and practitioners
 - Peer-reviewed scientific journal "review" article
 - General audience "problem analysis"

Next Steps for TAFCC - Silviculture

- Develop literature based review of scientific information supporting silvicultural treatment and system approaches to adaptation
 - Collaborative effort of scientists and practitioners
 - Peer-reviewed scientific journal "review" article
 - General audience "problem analysis"
- Potential packaging as an Expert Systems decision support tool?

Questions?