ҮПОҮРГЕІО ГЕЛРГIA乏

OPIEMOI FAIKQN OPSN KAI ENNOIRN THE AAETKHE ADAXEIPIETIKHE

ЕКДОГН YПОҮРГЕIO ГЕЛPIIA乏 ГENIKH ГPAMMATEIA $\Delta A \Sigma \Omega N$ KАІ ФҮГІКОҮ ПЕРІВАМАОNTO乏

ГENIKH \triangle IEYEYNEH ANAПTYEH Σ KAI ПРОГTA乏IA乏 $\triangle A \Sigma \Omega N$ KAI ФҮГIKOY ПEPIBAA＾ONTO乏． $\triangle I E Y \Theta Y N \Sigma H$ ANAПTYミH $\Sigma \Delta A \Sigma I K \Omega N$ ПOP Ω ． TMHMA $\triangle A \Sigma I K \Omega N ~ E Ф A P M O Г \Omega N$ ．

OPI $\Sigma M O I$ EIAIK Ω N OPQN KAI ENNOI ΩN TH $\Sigma \triangle$ A Σ IKH $\Sigma ~ \triangle I A X E I P I \Sigma T I K H \Sigma ~$

KAMNITEXNIKH
ЕПIMEЛЕІА
KAI ЕПIMEへЕІА
EK $\triangle \mathrm{O} \Sigma \mathrm{H} \Sigma$

EKДOTIKH
ПАРАГЛГН
ЕПТААОФОГ А．B．E．E．
Aрঠŋтттои́ 12－16， 11636 АӨ $\mathfrak{v} \alpha$
Т \uparrow ．： 0109214820 －Fax： 0109237033
www．eptalofos．com．gr－e－mail：info＠eptalofos．com．gr

ПРО＾ОГОェ

 ε عvоוо入оүіко́ тєріє $\chi о ́ \mu \varepsilon v o ~ т \omega v ~ o ́ \rho \omega v . ~$

 орıбно́ о́ о̀んv т т

 عvঠıapepoú́vous．

ェYMBOAA - XPHEH TOY EYPETHPIOY


```
    П\alpha\rho\alphaтвк}\muт\varepsilonı \sigma\varepsilon \alphá\lambda\lambda\оv орı\sigma\muо
(77)
=
```


$\Pi \alpha \rho \alpha \delta^{\delta} \boldsymbol{\gamma} \gamma \mu$:

157. Морфо́рıӨноऽ, үvŋ́бוоऽ: Орıఠцо́я

 тробסוорíß६ı tov ópo.
$\Pi \alpha \rho \alpha ́ \delta \varepsilon ı \gamma \mu \alpha$:

87. $\Delta ı \alpha \mu \varepsilon ́ т \rho о 兀, ~ \beta \alpha \theta \mu i ́ \delta \alpha: ~ О р ı \sigma \mu о ́ \varsigma ~$

$\geqslant 4 \geqslant$

EYPETHPIO

 тробо́бои к. α.

 тои плдŋӨибнои́ ато́ то $\delta \alpha ́ \sigma o s " . ~$

 трє $\mu v \circ \beta \lambda \alpha \sigma т п ́ \mu \alpha т \alpha$.

 $\mu \varepsilon ́ \sigma о и ~ к о р \mu о и ́ ~ т р і v ~ \alpha т о ́ ~ т \eta \nu ~ \alpha р \alpha i ́ \omega ш ŋ . ~$

(1) $Z_{1}=\frac{\left(V_{n}-V_{1}\right)}{n}$

$V_{1}=$ 'Оүкоऽ отŋv $\alpha \rho \chi \eta ́ ~ т \eta \varsigma ~ \pi \varepsilon \rho ı о ́ \delta о и ~$
$\mathrm{n}={ }^{\prime}$ Eтך Tףऽ терıóסou

$B^{0}=\frac{V}{V_{n}} \quad \dot{\eta} \quad B^{0}=\frac{G}{G_{n}}$

$V=\pi \rho \alpha ү \mu \alpha т$ тко́ $\varepsilon \cup \lambda \alpha$ то́ $\theta \varepsilon \mu \alpha \mu 3$ /ha
$V_{\mathrm{n}}=$ коvоvıко́ $\varepsilon \cup \lambda \alpha \pi о ́ \theta \varepsilon \mu \alpha \mu 3$ /ha

 коı $\alpha т \alpha \rho т і ́ Ъ \varepsilon т \alpha ı ~ \alpha т о ́ ~ т \alpha ~ \varphi и ́ \lambda \lambda \alpha ~ т \varepsilon \rho ı ү \rho \alpha \varphi \eta ́ S ~ т \omega v ~ \sigma ט \sigma т \alpha ́ \delta \omega v . ~$

 бuvӨŋкळ́v גuтоú к. α.

 $\mu \varepsilon \sigma о т \rho о ́ \theta \varepsilon \sigma \mu о$ каı $\mu \alpha к \rho о т \rho о ́ \theta \varepsilon \sigma \mu о ~ \delta \alpha \sigma 0 т т о v ı к о ́ ~ \sigma \chi \varepsilon \delta ı \alpha \sigma \mu о ́ . ~$

 ŋ́ үع $\omega \gamma \rho \alpha \varphi$ ккє́s $\alpha v \alpha \varphi о \rho \varepsilon ́ \varsigma . ~$

 бабıкŋ́ тро́бобоs.
45. Δ абІко́ єтіто́кıо: * Етіто́кıо, бабІко́ (107)

 $\alpha \cup \tau \omega ́ v ~ \tau \omega v$ ঠúo $\mu о р \varphi \omega ́ v$.

 каvоvıкои́ ठव́́бous $\alpha v \alpha т т и ́ \chi Ө \eta к \varepsilon ~ \alpha т о ́ ~ т о v ~ H U N D E S H A G E N ~ т о ~ 1826 ~ к \alpha ı ~ о \lambda о к \lambda \eta \rho \omega ́ \theta \eta к \varepsilon ~ о т \eta ~$ бuvé $\chi \varepsilon ı \alpha ~ \alpha т о ́ ~ т о \nu ~ C . ~ H E Y E R ~ т о ~ 1841 . ~$

 $\alpha ט ́ \varepsilon \eta \sigma \eta \zeta$ т т $\rho \alpha \mu \varepsilon ́ v o u v$ $\alpha \mu \varepsilon \tau \alpha ́ \beta \lambda \eta \tau \alpha$.

67. $\Delta \varepsilon ı ү \mu \alpha т о \lambda \eta \psi i ́ \alpha, ~ \sigma и \sigma т \eta \mu \alpha т ı к \eta ́: ~ К \alpha т \alpha ́ ~ т \eta ~ \sigma ט \sigma т \eta \mu \alpha т і к \eta ́ ~ \delta \varepsilon ı ү \mu \alpha т о \lambda \eta \psi i ́ \alpha ~ \eta ~ к а т \alpha v о \mu \eta ́ ~ т \omega v ~$
 каvоvікढ́v тєтраүढ́v ωv.

 η атоүрафŋ́.

- Oı tútioı tov MANTEL каı MASSON.

(2) $Z_{n}=\frac{2 V_{n}}{u}$
'Отои: $\mathrm{Z}_{\mathrm{n}}=$ Прооаи́\&пбף каvоvіки́
$V_{\mathrm{n}}=$ Еилато́Өєца каvоvіко́
u = Пєрі́тротоऽ хоо́vоऽ
 $\mu \varepsilon \gamma \varepsilon ́ \theta \eta$ проки́ттєı о ти́тоऽ тои MANTEL.

- O tútroc tov MANTEL (1852).
(3) $H_{i}=\frac{2 \cdot V_{w}}{u}=\frac{V_{w}}{0,5 \cdot u}$
'Отои: $\quad \mathrm{H}_{\mathrm{i}}=\Lambda \eta ́ \mu \mu \alpha$
$V_{w}=$ इи入 α то́ $\theta \varepsilon \mu \alpha$ каvоvіко́
u = Пєрі́тротоऽ хро́vоऽ
- Avádoүoৎ عívaı каı о ти́тос tov MASSON (1856).
(4) $H_{i}=\frac{V_{w}}{0,6 \cdot u}$
T α бט́ β ßо入 α о́тшऽ тьо по́v ω
- Avotpıoкós tútाoc (KAMERALTAXE 1788).
(5) $H_{i}=Z+\frac{V_{w}-V_{n}}{a}$

- O tútioc tov HEYER (1841).
(6) $H_{i}=P Z+\frac{V_{w}-V_{n}}{a}$

- O ти́ттоৎ t ωv PAULSEN (1787) - HUNDESHAGEN (1826).
(7) $H_{i}=Z_{u} \cdot \frac{V_{w}}{V_{n}}$

- O tútroc tov GERHARDT (1923).

- О ти́ттос тои кптгитои́ δ áбovc.
(9) $H_{i}=Z_{w}+\frac{V_{w}-V_{a}}{a}$

$V_{w}=$ Е $\cup \lambda \alpha т о ́ \theta \varepsilon \mu \alpha$ троүү μ тіко́

 $\pi \lambda \eta \theta \cup \sigma \mu \omega v$ ठ ε vт $\rho \omega v$.

 Хоขтро́тєра $\delta \varepsilon ́ v т \rho \alpha$ ．

 бuvо入ıкои́ úభоu̧ tou ס́́vtрои．

B $\alpha \theta \mu i ́ \delta \alpha$ бıанє́трои 2 вк．	Еи́рос тпч $\beta \alpha \theta \mu i ́ \delta \alpha \varsigma$ бıанє́тро⿱ бє єк．	B $\alpha \theta \mu i ́ \delta \alpha$ бıанє́трои 4 єк．	Eи́рос тпч $\beta \alpha \theta \mu i ́ \delta \alpha \varsigma$ бıацє́тро⿱ бє єк．
8	7，0－8，9	12	10，0－13，9
10	9，0－10，9	16	14，0－17，9
12	11，0－12，9	20	18，0－21，9
\ldots	．．．．．．．．	\ldots	．．．．．．．
18	17，0－18，9	\ldots	
．．．．	\qquad	44	$42,0-45,9$
34	33，0－34，9	48	46，0－49，9
\ldots		．．．．	
72	$71,0-72,9$	72	$70,0-73,9$

88．$\Delta ı \alpha \mu \varepsilon ́ т \rho о v, ~ к \lambda \alpha ́ o ́ \sigma \eta: ~ * ~ K \lambda \alpha ́ \sigma \varepsilon ı ৎ ~ \beta \alpha \theta \mu i ́ \delta \omega v ~ \delta ı \alpha \mu \varepsilon ́ т \rho о v ~(132) . ~$

 оікобטбти́ $\mu \alpha т \alpha$ ．
90．$\Delta ı \propto \chi \varepsilon i ́ p ı \sigma \eta, ~ \delta \alpha \sigma ı к \eta ́: ~ E i ́ v \alpha ı ~ т о ~ \sigma u ́ v o \lambda о ~ т \omega v ~ \sigma \chi \varepsilon \delta ı \alpha \sigma \mu \varepsilon ́ v \omega v ~ к \alpha ı ~ \lambda \varepsilon \lambda о ү ı \sigma \mu \varepsilon ́ v \omega v ~ \varepsilon v \varepsilon \rho ү \varepsilon ı \omega ́ v ~ к \alpha ı ~$

 бибтव́ס $\omega \mathrm{\omega}$ тои．

 $\mu \varepsilon \forall o ́ \delta o u ~ \delta ı а х \varepsilon i ́ p ı \sigma ŋ s ~$

 илотоиікя.

 v^{\prime} атотєغє́боиv:

2) To סגботтоviкó धíסos.

 пробтатвитіко́ клт).

 тароүо́н ε vou ६údou.

 аuтớ $\mu \varepsilon ́ p \eta ~ \alpha т о т є \lambda о u ́ v ~ \varepsilon ́ v a v ~ т o ́ \mu o . ~$

 биฮтó́бas.

 عvós סóóoous.

 бúvoło tou סá́oous.

К\о́oŋ Н入ıкías	Плаі́бוо НДıкікя	
I	1-20	ह́тワ
II	21-40	"
III	41-60	"
IV	61-80	"
V	81-100	"
к.о.к	.	

 $\alpha \rho ı \theta$ о́ $\alpha т о ́ \mu \omega \nu \mu \varepsilon \gamma \alpha ́ \lambda \eta \varsigma \alpha \xi i ́ \alpha \varsigma$.

120. Kavovıкó Sáбos: * Δ áóos, каvovıкó (60)

 кढ́v vגотоцı́́v.

 ठ $\alpha \sigma о к т \eta ́ \mu о v \alpha ~ \eta ́ ~ \alpha ́ \lambda \lambda \omega v ~ \delta ı к \alpha ı о и ́ \chi \omega v . ~$

 ठı $\omega о \varphi \eta \varsigma ~ \sigma \cup \sigma т \alpha ́ \delta \alpha \varsigma, ~ \eta ~ \alpha т о \mu \alpha ́ к р и v \sigma \eta ~ т \omega v ~ \delta ı т \varepsilon р і ́ т \rho о т \omega v, ~ т \rho ı т \varepsilon \rho і ́ т р о т \omega \nu ~ к \lambda т . ~ т \alpha \rho \alpha-~$

E入入人́бס

	Eúpos		Eúpos
1	$7.0-20.9 \mathrm{~cm}$	la	$7.0-13.9 \mathrm{~cm}$
II	$21.0-34.9 \mathrm{~cm}$	Ib	$14.0-25.9 \mathrm{~cm}$
III	$35.0-48.9 \mathrm{~cm}$	II	$26.0-37.9 \mathrm{~cm}$
IV		III	$38.0-49.9 \mathrm{~cm}$
		IV	$50.0-61.9 \mathrm{~cm}$
		V	$62.0-73.9 \mathrm{~cm}$
		VI	74.0 коı ớv ω

1．Eтıкирıархои́vта $\delta \varepsilon ́ v т \rho \alpha: ~ \Delta \varepsilon ́ v т \rho \alpha ~ \mu \varepsilon ~ \varepsilon \varepsilon \alpha ı \rho \varepsilon т і к \alpha ́ ~ ı б \chi \cup \rho \eta ́ ~ к о ́ \mu \eta . ~$
2．Kирıархои́vта $\delta \varepsilon ́ v т \rho \alpha: ~ \Sigma \chi \eta \mu \alpha т i ́ Z o u v ~ к \alpha т \alpha ́ ~ к \alpha v o ́ v \alpha ~ т \eta \nu ~ к и ́ p ı \alpha ~ \sigma и \sigma т \alpha ́ \delta \alpha ~ к \alpha ı ~ \varepsilon ́ \chi о u v ~$ бхєтіко́́ ка入人́ $\alpha v \alpha т т и ү \mu \varepsilon ́ v \eta ~ к о ́ \mu \eta . ~$

 єкатобто́.

(11) $v=g$ hf \quad п́ $\quad V=G . H F \quad$ 'Oтои:

$$
\begin{aligned}
& \text { g, G = }
\end{aligned}
$$

* $\Delta \varepsilon і ́ к т \varepsilon \varsigma ~ а \varepsilon ı р о р і к о ́ т \eta т а \varsigma . ~$

 нкктои́ סव́́боия.

 ठદ́vтрои троऽ тоv о́үко вио́ৎ биүкрітікои́ ки入ívסрои (w).

$$
\begin{equation*}
f=\frac{v}{w} \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
\lambda_{0.9}=\frac{\mathrm{v}}{\mathrm{w}_{0.9}} \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
f_{1.3}=\frac{v}{w_{1.3}} \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
\eta_{0,5}=\frac{d_{0,5}}{d_{0,9}} \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
q_{0,5}=\frac{d_{0,5}}{d_{1,3}} \tag{16}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{q}_{\mathrm{H}}=\frac{\mathrm{d}_{1,3}}{\mathrm{~d}_{0,9}} \tag{17}
\end{equation*}
$$

 к入 $\alpha \delta$ б́६и入о．

 тє入ıкои́ оוкоронікои́ атотвлદ́бцатоऽ．
 ठદ́vтрんv．

 $\mu \varepsilon ́ \gamma і \sigma т \eta S$ \&u入отарабүүүŋ́s.

甲ибıки́ $\alpha v \alpha \gamma \varepsilon ́ v v \eta \sigma \eta ~ \tau \omega v ~ \sigma ט \sigma т \alpha ́ \delta \omega v ~ к . \alpha . ~$

 ботіко́тŋтая.

$W R=\frac{A_{u}+\sum D-(c+u \cdot v)}{u}=0,0_{p} \cdot\left(B+H_{m}\right)^{*} \operatorname{Max}$.

$B R=\frac{A_{u}+\Sigma D-(c+u \cdot v)-0,0_{p} \cdot \Sigma H_{m}}{u}=0,0_{p} \cdot B^{*}$ Max.

$p=\frac{A_{u}+\sum D-(c+u \cdot v)}{u\left(B+H_{m}\right)} \cdot 100 *$ Max.

$B R=K \alpha \theta \alpha \rho \eta ́ ~ \varepsilon \delta \alpha \varphi$ וки́ тро́бобоऽ
p = Етıто́кıо

u $=$ Пгрі́троттоя хро́vos

 u入отоі́ŋбŋ тךऽ $\mu \varepsilon \lambda \varepsilon ́ т \eta \zeta$.

 к $\lambda \alpha \delta ı \omega ́ v$.
 ठєv $\chi \omega \rho \alpha ́ \varepsilon ı ~ \mu i ́ \alpha ~ \alpha к о ́ \mu \eta ~ к о ́ \mu \eta . ~$
 $\chi \omega \rho \alpha ́ \varepsilon ı ~ \mu і ́ \alpha ~ \alpha к о ́ \mu \eta ~ к о ́ \mu \eta . ~$
 $\chi \omega р о и ́ v ~ т \varepsilon р і \sigma \sigma о ́ т \varepsilon \rho \varepsilon \varsigma ~ \alpha т о ́ ~ \mu i ́ \alpha ~ к о ́ \mu \varepsilon \varsigma . ~$
反ıớбтартף.

 0,3-1,0 ha. Мعүó่ $\lambda \varepsilon \varsigma$ бuбт α $\delta \varepsilon \varsigma>1,0$ ha).

 крі́бөи бибта́ $\delta \alpha$.

 бто биขтоно́тєро биvато́ ұро́vo．

 бто і́סıо єті́тாغסо．
 opópous．

 モ́ $\omega \varsigma 50$ દ́тך ако́ $\dagger \eta$ ．
 ч入отоціَ́ каı $\alpha v \alpha ү \varepsilon ́ v v \eta \sigma \eta ~ \eta \lambda ı к і ́ \alpha . ~$

ү．Поо́тŋтеऽ то́тои．

ع．Н入ıкі́
от．Zu入оßрíӨєıя

ๆ．Tov като́ $\varepsilon к т \alpha ́ \alpha ı о ~ ६ \cup \lambda \omega ́ \delta \eta ~ о ́ ү к о ~ к \alpha ı ~ т \eta \nu ~ т р о \sigma \alpha и ́ ধ \eta о \eta . ~$

 ка入и́тєро $\delta u v \alpha т о ́ ~ т р о ́ т о . ~$

 єкцєта入入єштікє́я чдотоці́єऽ．

 uтобохŋ́ т тшv ото́р ωv.

 и入отонíَ ६и入шбоиц о́үкои.

 úభous tns ouøtádas

 $\varepsilon \pi เ \varphi \alpha ́ v \varepsilon ו \alpha ~ к о \rho \mu \omega ́ v ~ т \eta \varsigma ~ б ט \sigma т \alpha ́ \delta \alpha \varsigma . ~$

 бибт $\alpha ́ \delta \alpha \varsigma . ~$

 avo入óүюs тои סаботоviкои́ вíסous.

 бІळхєıрібтіки́ऽ $\mu \varepsilon \lambda \varepsilon ́ т \eta \varsigma$.

240. Xро́vos, тєрі́тротоя: * Пері́тротоя Хро́vos (171)

244. ' $\Omega \rho ı \mu \eta ~ \eta \lambda_{ı}$ кía: * Н $\lambda_{ı к і ́ \alpha, ~}^{\prime} \rho ı \mu \eta(114)$

BIBAIO「PAФIA

"ALLGEMEINE FORST- ZEITSCHRIFT", 1954	Die Festlegung von Forsteinrichtungsbezeichnungen. Bayerischer Landwirtschaftsverlag GmbH., Muenchen
ASSMANN, E. 1961	Waldertragskunde. BLV Verlagsgesellschaft Muenchen Bonn Wien, 1961

KRAMER, H., AKCA, A., 1982 Leitfaden fuer Dendrometrie und Bestandesinventur.
J. D. Sauerlaender's Verlag, Frankfurt am Main

NTAФH L, 工. 1975	
PRODAN, M. 1965	Holzmesslehre. J. D. Sauerlaender's Verlag, F. a. M.
RICHTER, A. 1963	Einfuehrung in die Forsteinrichtung. Neumann Verlag, Radebeul
SCHOBER, R. 1975	Ertragstafeln wichtiger Baumarten. J. D. Sauerlaender's Verlag, Frankfurt a. M.
SPEIDEL, G. 1967	Forstliche Betriebswirtschaftslehre. Verlag Paul Perey. Hamburg und Berlin
SPEIDEL, G. 1972	Planung im Forstbetrieb. Verlag Paul Perey. Hamburg und Berlin
ETAMOY, N. 1985	

 $\mu \varepsilon \lambda \varepsilon \tau \omega ́ v ~ \delta \alpha \sigma \omega ́ v ~ к \alpha ı ~ \delta \alpha \sigma ı к \omega ́ v ~ \varepsilon к т \alpha ́ \sigma \varepsilon \omega \nu . ~$
Еүки́клıоऽ 158072/1120/1965

